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Abstract

Synchronization is a spontaneous event in which a system of oscillators lock to a common frequency.

T‘hese oscillators are not necessarily pieces of machinery, but could also be arrays of lasers, crickets that

chirp in unison, or fireflies that flash at the same time again and again. Whatever the case may be, many

mathematicians, like Steven Strogatz, have dedicated time and energy to study synchronization in an effort

to understand and explain it. In this paper, we will attempt to do the same. First we will begin by looking

back and reviewing some of the most influential literature surrounding synchronization, specifically, to

work of Yoshiki Kuramoto, and his model. Then, we will utilize the Sparse Identification of Nonlinear

Dynamics (SINDy) to simulate the Kuramoto model with different parameters in order to determine how

well coupling strengths between oscillators in a variety of oscillator systems can be detected. Finally, we

will deliver our results, analyze them, and compare them to work that has already been done using the

Kuramoto model.

Introduction

In mathematics, the term synchronization refers to how a population, most often oscillators, begin rotating

or working in unison. Much of the work on synchronization has been focused on collective synchroniza-

tion specifically. Steven Strogatz described collective synchronization as the phenomenon “in which an

enormous system of oscillators spontaneously locks to a common frequency”(5). This field of study, has

been contributed to by a score of mathematicians since the mid-1900’s. Some of the most fruitful work

began withWinfree, but it was Yoshiki Kuramoto who really put synchronization analysis on a firmer foun-

dation.

Around 1975, Kuramoto began working on collective synchronization, starting with Winfree’s model.

Kuramoto strove to simplify, or improve, his understanding of the variables involved. He chose to follow

the mean-field case, which would be the most useful for his purposes. Using this case and substitution,

Kuramoto determined this governing equation:

θi = ωi + K

N

N∑
j=1

sin(θj − θi) where i = 1, 2, 3, . . . , N.

The rate of change of a given oscillator’s phase over time
dθi
dt is equal to its natural frequency ωi plus the

coupling strength K divided by the number of oscillators N , multiplied by
∑N

j=1 sin(θj − θi) of the sine of
the phase difference between every other oscillator j and the oscillator in question i.

In addition to this model, we will use the order parameter, denoted by r, to get a single measure of the

degree of synchronization of the system. When r=1, the system is fully synchronized. When r = 0, that

means the system is fully not synchronized. Below is a plot showing the order parameter in a system of

15 oscillators with a coupling strength of 3 over 2.5 seconds.
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Figure 1. Time Evolution of the Order Parameter

Synchronization has a vast range of applications: oscillatory patterns are found in the brain, synchroniza-

tion is used for AC generators for power grid stability, coupled laser arrays rely on synchronization to

be consistent, firefly oscillations (flashes) synchronize over time, cardiac cells rely on synchronization to

avoid issues. Enhancing understanding of the synchronization of coupled oscillators and the uses of the

Kuramoto model can lead to new insights and discoveries in these promising fields.

This project aims to figure out if synchronization can be modeled and explained using various data-driven

methods. The large set of coupled oscillators will be simulated using the Kuramoto model, which is a set

of nonlinear ordinary differential equations. They’re nonlinear because they involve the sine function and

the only variable that is differentiated is time. Each equation in the set represents the rate of change in

an oscillator’s phase. The equations are coupled via θi and θj. The θi oscillator is affected by all other

oscillators θj. This is modeled by sin(θj − θi) which captures the phase difference. They affect each

other, θi affects θj and θj affects θi, the interaction is bidirectional. The sine function is used because

it effectively represents how far apart two angles are. The combined effect of all oscillators θj on an

individual oscillator θi is modeled by
∑N

j=1.

Wewill simulate this model in Python using the Kuramoto library and then analyze the output data to figure

out how the number of oscillators N and the distribution of natural frequencies ω affect synchronization.

Methods

Sparse Identification of Nonlinear Dynamics (SINDy) is an algorithm that is used to capture governing

equations of dynamical systems from data. The SINDy algorithm is given a selection of snapshots and

their corresponding time derivatives and then performs a regression using a library of nonlinear candidate

functions to find governing equations for the dynamical system. The key idea behind SINDy is that most

dynamical systems utilize only a sparse amount of nonlinear equations from the library of potentially

relevant nonlinear functions (1).

Wewill simulate data using the Kuramoto model and use SINDy to identify the coupling strength between

the coupled oscillators in the simulated data. First, we will explore the general dynamics of the system by

varying key variables in the Kuramoto model like the coupling strength, the natural frequency distribution,

the number of oscillators, the initial phase distribution, and the noise level. This exploration will help us

to understand how these variables impact synchronization and which variables play a critical role in the

system’s dynamics. This will be done primarily by evaluating the behavior of the order parameter over time

to determine if the system achieves synchronization, and if so, how quickly it synchronizes. We will pay

attention to the order parameter’s progression towards 1, full synchronization, or the order parameter’s

stabilization at a lower value, partial synchronization. Below is a plot of the Kuramoto output, showing

the evolution of the same system of 15 oscillators over time.
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Figure 2. Activity Plot of Oscillator Phases Over Time

After establishing a basic understanding of the system’s dynamics, we will use the PySINDy Python pack-

age to investigate SINDy’s capacity to identify the coupling strength between oscillators. This will be

done by examining phase differences using auxilary equations. A system of three coupled oscillators will

have three pairwise equations:

x = θ3 − θ1,
y = θ1 − θ2,
z = θ2 − θ3

The Python code is scalable to handle any number of oscillators and generate all necessary pairwise

equations. The number of formulas is
(n

2
)
for the number of oscillators n. This analysis will provide

insights into the SINDy algorithm’s effectiveness with oscillatory systems such as the Kuramoto model.

The extended description of the script can be found in the paper. Next is a plot of the pairwise difference

derivatives over time. With 15 oscillators, there are 105 pairwise differences being calculated. We can

still see a general convergence at a similar point in time as the order parameter plot and the activity plot.
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Evolution of Phase Difference Derivatives Over Time

Figure 3. Pairwise Phase Differences Among 15 Oscillators

Results and Analysis

The coefficients returned from SINDy appear to be consistently directly related to the initial coupling

value. There appears to be a scaling factor for the initial coefficient as the number of oscillators increases.

With only two oscillators the coefficients are very close to the original coupling strength values.
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Average Slopes:
2 Oscillators: 1.01
3 Oscillators: 0.58
5 Oscillators: 0.36
10 Oscillators: 0.22
25 Oscillators: 0.14
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Figure 4. Average First Coefficient vs. Coupling Strength for Different Numbers of Oscillators

As shown in the above figure, a plot of our results, with 2 oscillators, the coefficient returned by SINDy

is very close to the original coupling strength value. The magnitude of the factor of difference, visualized

as the slope in this plot, is about 1 for 2 oscillator systems that consistently synchronize, which happens

when the coupling strength is 2 or greater. As the number of oscillators increases, we can see consistency

in the slopes of those systems that consistently synchronize, but the factor decreases at some scale.

Discussion

One result that becomes evident from our work is the change in the average first coefficient, for each set

of n oscillators, as the coupling strength varies. Like DuncanWatts and Steven Strogatz, we wanted to see

what outcomes would be visible if we kept the number of oscillators the same, but changed the coupling

strength (k)(6). Watts and Strogatz applied this tactic to ’small-world’ networks in 1998. Specifically,

they arranged 20 vertices in a ring, and wired connections between each vertices and its four closest

neighbors. In this initial step, the probability p was equal to 0 as the ring was unchanged and considered

”completely regular” (6). and hanging p meant rewiring the connections. When the probability equaled

one, the network was considered completely random since some vertices had two connections whereas

others had four or more. Between p=0 and p=1, Watts and Strogatz found that the graph truly became

a ’small-world’ network as the average characteristic path length decreased. Smaller path lengths lead

to enhanced signal-propagation speed, and eventually synchronization. As Nguyen, Honda, Nakamura,

Sano, and several others would go on to show, Kuramoto’s model was useful in more than one type of

dynamical data.

A more recent article documents their application of the Kuramoto model to graph neural networks (4).

Similar to the ring model Watts and Strogatz employed, graph neural networks are layered arrangements

of nodes which are connected by edges. These data systems aggregate information via message passing

between nodes along the edges of each layer. One limitation of graph neural networks is a problem called

over-smoothing (4) which occurs when a specific graph neural network repeatedly aggregates information

from neighboring nodes. As this happens, the representations of nodes from different classes can become

indistinguishable. Nguyen and all sought to tackle this problem by utilizing the Kuramoto model because,

”there is a connection between synchronization and the over-smoothing phenomenon in GNNs. Both

involve a collective behavior of the nodes in the network, where nodes become more similar to each

other over time” (4).

Conclusion

In this paper we defined the phenomenon that is synchronization, and reviewed one of the most

influential models for observing and analyzing rates of synchronization. We also set up our experiment

using the Kuramoto model for data simulation and, using SINDy, were able to reliably estimate the

original coupling strength in Kuramoto just from the output data. In our experiment, the dynamics in each

system with a set number of oscillators appear to be consistent under the previously outlined conditions.

This suggests that real-world data could be analyzed via SINDy to return to a Kuramoto model that could

be further tested and adjusted.
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