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Trajectory Inference

Reconstructing continuous trajectories between
point clouds.

Given an ordered sequence of probability measures { ;. }

attimestg < t1 < -+ < t,
we aim to find a curve v : R — P,(IR%) such that:

Interpolation: v/(t;) = p, for all 7, or

“t1'eP( ( )7/'l’tj)<€

Approximation: v(t,) ~

Optimal Transport (OT)

OT seeks to move mass of distribution a to
distribution 5 in a way that minimizes work (or
cost).

? ® Distribution a
| T @ Distribution B

Exact OT: Linear Program

(W = min, e = 37,0

1=« Q. = source
st.  y'1=4 B = target
v >0 C = cost matrix

Where 7y Is the optimal coupling
between ¢ and (3

Lane Riesenfeld Algorithm

The Lane-Riesenfeld algorithm generates smooth curves through an
iterative process involving doubling and refinement, which increase
the number of control points, and smoothing via averaging. Repeating
these steps leads to the convergence to a smooth limit curve.
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(a) Doubling points. (b) Averaging step at m = 1.
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(c) Averaging step at m = 2. (d) Refined points.

OT Averaging

Wasserstein Lane Riesenfeld Algorithm
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Geodesic Averaging (Example 1)
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Geodesic Averaging (Example 2)
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I: procedure WASSERSTEIN-LANERIESENFELD([11¢,]5_g, R, M)
2:  Input: Point clouds to be refined [, ]5_
3 Input: Refinement Level R € Z
4. Input: Degree M of B-Splines to be approximated
o MY o ;) > Initializing point clouds to be doubled
6: forr =1 to é
e for j = 0 to |[vM)| do
8: I/(O) — I/(M) > Doubling point clouds
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12: for m =1 to M do
13 for j = 0 to |[v(™ 1| do
14: I/J(-m) — OT-av(z/](.m_l), I/J(Tl_ . 2) > Repeated OT averaging
15: end for
16: end for
L
18: return Refined point clouds v(M), |[vM)| = 2B(T + M —1)4+2 - M
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