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Auditory Encoding Model with Convolutional Neural Network 

The auditory system enables us to understand the surrounding information, and
human experiences auditory perception every day in the form of speech and music.
The sound waves entering our ears are composed into frequency components, and
the signals are sent to different brain areas. In the primary auditory cortex (A1), the
inputs are integrated with information from other sensory systems. In fact, A1 plays
an important role in information processing and the formation of auditory objects.

The encoding problem in A1 studies how A1 neurons response to external stimuli.
Many studies of the auditory cortex use spectrotemporal receptive field (STRF) to
investigate the relationship between the stimulus and the neural responses over time.
One disadvantage of this approach is that it assumes linearity of auditory responses
while different experimental and computational studies have indicated that neuronal
response in the auditory system is not merely linear (Atencio et al., 2009; Sahani
and Linden, 2002).

In our study, we deploy a convolutional neural network framework to
investigate auditory cortical responses. Even though neural network is newer
compared to many traditional models (that tend to involve systems of partial or
ordinary differential equations), it has gained tractions recently due to its speed,
availability of open datasets, and efficiency of training algorithms (Lindsay, 2021;
Pennington and David, 2023). Also, we plan to study the structure of the
convolution neural network. Investigating the network architecture and finding some
common features will enable us to propose a potential mechanism of information
processing in the auditory cortex.
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Results (Cont’d)

We obtained recording data from Zenodo (Pennington and David, 2023). The
recording was performed in A1 and a secondary auditory field (PEG) on 5 ferrets.
We only focus on the A1 recording for this study. The A1 recording has 22 sites
with 849 units.

The stimuli is a collection of 595 natural sound samples. Each sample is 1-second
long, followed by a 0.5-second of inter stimuli interval (ISI). Approximately 15% of
the sounds were ferret vocalizations and environmental noises while the remaining
85% of the sounds were human speech, music, and environmental noises.
Here shows the heatmap of
three samples from 900 ms
to 1350 ms. The stimulus
waveforms were
transformed to log-spaced
spectrograms with 18
channels ranging
logarithmically from 200
Hz to 20,000 Hz. To be
consistent with the obtained
data from Zenodo
(Pennington and David,
2023), we used the first 27
seconds as validation data.

The obtained data has firing rates for 849 A1 units. For the current model, we focus
on the population firing rate, i.e. the mean firing rate across 849 units. We then
normalize the population firing rate using its mean (0.08) and standard deviation
(0.29).
The normalized population firing rate shown for 900 ms to 1350 ms. The yellow

dashed lines indicate
the onset of a sound.
The red dashed lines
indicate the end of a
sound. It can be
observed that the
firing rate increases
abruptly as soon as
the sound is on. It
then quickly
diminishes even if
the sound is still on.

To study how A1 neurons response to external stimuli, we build convolutional neural network models
that use stimuli as inputs to estimate the neural responses:
 The input is composed of the stimuli at that timepoint and the stimuli of the previous 20 timepoints

(previous 200 ms, 1 time bin = 10 ms), resulting in a 21 (time dimension) by 18 (frequency
dimension) matrix.

 The output is the normalized population firing rate �𝒓𝒓(𝒕𝒕).
 The models are developed in the TensorFlow library of Python.

The Zenodo data was averaged across trials and aligned with respect to each stimulus. However, the
actual order of each stimulus was randomized during the experiment (Pennington and David, 2023).
Thus, we do not have a sequential time series from one stimulus block (1.5 sec) to the next. In our
models, we only predict the responses starting at 200 ms for each stimulus block (the red arrows).

ONE-CONVOLUTIONAL LAYER MODEL TWO-CONVOLUTIONAL LAYER MODEL 

The outputs of both models (one-convolutional layer and two-convolutional layer) are shown above. The time plot of
the two-convolutional layer model shows a slightly better fit than that of the one-convolutional layer model.
⮚ In most cases, both models are able to capture the up and down trends of the normalized population firing rate. For

example, both models predict the abrupt increase of the response at the stimulus onset (the black arrows).
⮚ The two-convolutional layer model tends to predict the down trend more accurately than the one-convolutional

layer model (the purple stars).
⮚ While both models can capture the trend, the magnitude of the prediction tends to be less extreme than the

magnitude of the actual response (in both up and down directions).
⮚ The model predictions of the responses to some sound samples seem to be better than the predicted values for other

sound samples. The response to the third sound sample gets a better prediction from both models as compared to the
first two.

Note that there is no predicted responses at the first 200 ms of each sample block because our models do not apply for
this period.

ONE-CONVOLUTIONAL LAYER MODEL TWO-CONVOLUTIONAL LAYER MODEL 

The outputs of both models (one-convolutional layer and two-convolutional layer) are shown above. The scatter plot
between the predicted response and the actual response of the two-convolutional layer model shows a slightly better fit
than that of the one-convolutional layer model. The 𝑅𝑅2 values for both models are listed in the figures. The red lines
𝑦𝑦 = 𝑥𝑥 show how close the fitted values are to the actual values.
 In most cases, the predicted values follow the same increasing and decreasing trends as the empirical values because

the scatter plots tend to hoover around the red line 𝑦𝑦 = 𝑥𝑥.
 Moreover, the 𝑅𝑅2 values for the testing data are always bigger than the 𝑅𝑅2 values of the training data. We think that

it is due to the fact that the testing data is much simpler and smaller than the training data. In fact, there are 577
sound samples in the training set while there are only 18 samples in the testing set. We use these as our training and
testing sets to be consistent with the data we obtained from Zenodo (Pennington and David, 2023).

In general, the convolutional neural networks perform better than the general linear models. Here the two-convolutional layer
model is slightly better than the one-convolution layer model.
 In both models, the predicted responses tend to follow the same trend of the actual responses. However, the models cannot

capture some of the extreme high and low values completely.
 Both models tend to fit the upshoot in the firing rate immediately after the onset of each sound sample really well

compared to the rest of time course. This may be due to the fact that initially the neurons get excited mostly due to the
onset of the sounds, but as time goes on there are other neuronal processes such as habituation and adaptation. Thus, our
encoding modes (taking solely stimuli as inputs) do not capture the latter and more complicated neuronal processes.

Moving forward, we plan to improve our encoding models by:
 looking at different data sets with other types of stimuli such as pure tones, dynamics ripples, and natural sounds
 analyzing the fit across sound samples to investigate the relationship between response patterns and stimuli, i.e.

representational similarity analysis.
 studying the patterns and structure of the parameter matrices.
 investigating the statistics of the stimuli to determine how these features can be used to inform the structures of the

models.

For each stimulus block, we compare the predicted responses and the
actual responses at each time point. We then compute the 𝑅𝑅2 values
across times. Here are the 𝑅𝑅2 plots for both training and testing sets for
the two-convolutional layer model.
 The 𝑅𝑅2 value is the highest immediately after the onset of a sound

sample. The model is able to capture the abrupt rise in the firing rate
due to the start of a stimulus.

 The 𝑅𝑅2 value is lower after that. In the training set, the 𝑅𝑅2 value
quickly decreases to about 0.2 within 150-200 ms after the stimulus
onset. In the testing set, the 𝑅𝑅2 value fluctuates between 0.6 and
some really small values.

 The 𝑅𝑅2 value improves quickly again immediately after the stimuli is
off at 1250 ms. While the 𝑅𝑅2 value here is smaller than the 𝑅𝑅2 value
at the onset of the stimulus, it is on the average higher then the 𝑅𝑅2
value between 400 ms and 1250 ms.

In general, the model is able to predict the sudden changes in the firing
rates due to the abrupt change in environment. However, while the
stimulus is on, the model does not perform as well.

The result for one-convolutional layer model follows similar trend.
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 Adam optimizer
 Loss function: 

ℒ ~ 𝑟𝑟 𝑡𝑡 − �̃�𝑟 𝑡𝑡 2

…
𝑡𝑡0 𝑡𝑡20 𝑡𝑡170 𝑡𝑡𝑛𝑛−1−129

𝑡𝑡20 → 𝑡𝑡149 𝑡𝑡170 → 𝑡𝑡299 𝑡𝑡𝑛𝑛−1−129 → 𝑡𝑡𝑛𝑛−1

𝑡𝑡149 𝑡𝑡299 𝑡𝑡𝑛𝑛−1
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