

Types of Data

Numerical

- Quantitative
- Types:
 - Continuous (measurable), can take any value between 2 specified values
 - Fish length
 - Discrete (counts), only certain values are possible
 - Number of fin strokes

Categorical

- Distinct groups, often qualitative
- Differences between values are unknown
- Types:
 - Nominal (without order)
 - Transgenic mice (WT, Het, KO)
 - Dichotomous (2 categories without order)
 - Aquatic/terrestrial, male/female
 - Ordinal (with order)
 - 4-point pain scale (none, light, moderate, severe)

Descriptive Statistics

Central Tendency

• Mean, median, mode

Data Spread

• Standard deviation; SD = $\sqrt{\frac{1}{N-1}\sum_{i=1}^{N}(x_i - \overline{x})^2}$

Confidence Interval - a measure of precision

Precision vs. Accuracy

Accurate but not precise

Precise but not accurate

Precise and accurate

Confidence Interval (CI) of the Mean

A CI provides a range of values which is likely to contain the population mean

95% Cls:

Repeat your experiment 100x

 95 of your results will fall within the CI

Wide CI = low precision

Narrow CI = high precision

For a normal distribution 95% CI = Mean $\pm \left(1.96 \times \frac{SD}{\sqrt{n}}\right)$

Probability Distributions

Continuous data

Normal distribution (Gaussian)

Based on *Central Limit Theorem*:

Typically used for large sample sizes (n>30) with a known population standard deviation (SD)

Probability Distributions

Continuous data

Normal distribution (Gaussian)

Based on *Central Limit Theorem*:

Typically used for large sample sizes (n>30) with a known population standard deviation (SD)

Other Distributions

- Student's t
 - Continuous data, small sample
- Poisson
 - Rare discrete data (mutations)
- Binomial
 - 2-outcome discrete data (yes/no)
- Chi squared
 - Dichotomous categorical data

Type I and II error

Null Hypothesis, H_o – there is no real difference between groups

There are many kinds of statistical tests

- T-test
- Analysis of variance (ANOVA)
- Analysis of covariance (ANCOVA)
- Regression
- Correlation
- Chi-square
- Logistic regression
- Multiple linear regression
- Repeated measures ANOVA

There are many kinds of statistical tests

- T-test
- Analysis of variance (ANOVA)
- Analysis of covariance (ANCOVA)
- But how do we know which test
- Chi-square we should do??
- Logistic regression
- Multiple linear regression
- Repeated measures ANOVA

What type of data do I have?

- Independent vs dependent variables:
 - Independent = question (what you're changing)
 - Dependent = answer (what you're measuring)
- General experimental question:
 - Does changing the independent variable correlate with changes in the dependent variable?

What type of data do I have?

• Continuous vs categorical data

What type of data do I have?

There are many kinds of statistical tests DEPENDENT

	Categorical	Continuous
AUEN I Categorical	• Chi-squared	 T-test ANOVA Repeated measures ANOVA ANCOVA
Continuous	Logistic regression	 Regression Correlation ANCOVA Multiple linear regression

How do I choose which test to run?

P-value

Calculated probability, p

The probability of an observed value when H_o is true

• A true *H*_o means there is no true difference between groups

When do we reject H_o ? We set a significance level, p=0.05Beyond p=0.05, the values are considered extreme and we reject H_o

Assumptions of statistical tests

• Normal distribution

Test for normality with Shapiro-Wilk test

Assumptions of statistical tests

- Normal distribution
- Equal variance between groups

Test for homogeneity of variance with Levene's test

Assumptions of statistical tests

- Normal distribution
- Equal variance between groups
- Does your data meet these assumptions?
 - YES \rightarrow Parametric tests
 - NO \rightarrow Non-parametric tests

Graphing fundamentals

Dependent variable

Independent Variable

Graphing fundamentals

Independent Variable

Categorical

<

Do lizards prefer to run on rock or sand? And does it matter whether it's day or night?

Graphing fundamentals

Independent Variable

Categorical

<

How many of each colour are in a box of Smarties?

Is oxygen consumption different between wildtype and mutant mice? And does that depend on the light cycle?

Graphing fundamentals

Independent Variable

<

Can taller people run faster than shorter people?

Graphing fundamentals

Categorical & Continuous

Are hind limbs longer in climbing skinks than in terrestrial skinks?

Graphs + Stats Summary

DEPENDENT

Statistical vs. Biological Significance

p<0.05 - yay!
But is the effect size meaningful?</pre>

Example:

Population: people with chronic pain

Comparison: control vs. treated

Mean difference is 0.25 of a point on a 10-pt Likert Scale

• 1=no pain; 10=excruciating pain

Mean difference result gives p<0.05

But a 0.25 point difference has no clinical relevance

Confidence Intervals can also help!

• Recall that CIs measure precision

Let's say the result is statistically *and* clinically relevant (*p*<0.05; mean difference is 2 pts)

But the 95% CI is wide:

Do the CI limits support a meaningful result?

