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Discrete logarithm problem

Definition

Let (G, ◦) be a finite group, a ∈ G an element of prime order p, and x ∈ 〈a〉, where 〈a〉 :=
{a ◦ a ◦ . . . ◦ a︸ ︷︷ ︸

k times

: 0 ≤ k ≤ p − 1} is the cyclic group generated by a. The discrete logarithm

problem (DLP) is finding the integer k, 0 ≤ k ≤ p − 1, such that

a ◦ a ◦ . . . ◦ a︸ ︷︷ ︸
k times

= x.

This integer k is called the index of x to the base a, and we will denote it by indax.

Example (summation modulo p): (G, ◦) = (Zp, +)

Let · denote multiplication modulo p. The discrete logarithm problem (DLP) is finding the integer

k, 0 ≤ k ≤ p − 1, such that

a + a + . . . + a︸ ︷︷ ︸
k times

= a · k = x.

I.e.

indax = x · a−1,

where a−1 is an inverse of a in multiplicative group (Z∗
p, ·).

Thus, for (G, ◦) = (Zp, +) the DLP is equivalent to simple modular multiplication by a−1.

Example (the elliptic curve group): (G, ◦) = E(Fp)

Let Fp = (Zp, +, ·) and
E(Fp) = {(x, y) ∈ F2

p | y2 = x3 + Ax + B},

be an elliptic curve equipped with standard group structure. If |E(Fp)| = p, then the discrete

logarithm problem (DLP) over E(Fp) is also tractable.

So, DLP can be easy, but

Main claim of paper: the mapping x → indax for any group of prime cardinality p is hard to train

using gradient-based algorithms.

GD Framework

Ohad Shamir considered the following class of gradient-based algorithms:

Let a be some parameter that is randomly chosen in the beginning;

The objective that an algorithm optimizes is F (w, a) and F (w, a) is highly sensitive to the

choice of a;
At every iteration t = 1, · · · , T , the algorithm chooses a point wt and receives (from an

oracle) a vector gt such that ‖∇F (wt, a) − gt‖ < ε.
wt+1 = rt({wi}t

1, {gi}t
1).

Informally: If the Vara[∇F (w, a)] is very small (� T −3), then the latter algorithm will not suc-

ceed, because an information content of the gradient about the key parameter a is too small.

GD Framework: application to our case

Let a be a base that is uniformly sampled from G/{1};
Let fw : G/{1} → R be our architecture of NN;

Let l : R → R be some 1-Lipshitz loss function;

The objective is

F (w, a) = Ex∼G/{1}l((−1)indaxfw(x)),

or

F (w, a) = Ex∼G/{1}(indax − fw(x))2

Informally: We prove that Vara[∇F (w, a)] = Õ( 1√
p). This means that the number of iterations

needed should behave at least like p1/6. For p ∼ 2512 we have T ∼ 1025.

Learning the last bit of indax

Figure 1. Learning with a 3-layer width-1000 dense network. Darker shades correspond to longer

bitlengths. For each bitlength n, the group order p is chosen randomly from the prime numbers in the

interval [2n−1, 2n − 1].

Learning all bits

Figure 2. Test Accuracies when learning all bits of the discrete logarithm in (Zp, +) with a single neural network.

Bitlengths of p: 20 (left) and 40 (right).

Main result

Theorem

Suppose that fw(x) is differentiable w.r.t. w, and for some scalar d(w), satisfies

EX∼G\{1}

[∥∥ ∂
∂wfw(X)

∥∥2
]

≤ d(w)2. Let the loss function ` be either the square loss

`(ŷ, y) = 1
2(ŷ − y)2 or a classification loss of the form `(ŷ, y) = s(ŷ · y) for some 1-Lipschitz

function s. Then

E
A∼G\{1}

‖∇F (w, A) − µ(w)‖2 ≤ c · d(w)2 ln p
√

p
, (1)

where µ(w) := EA∼G\{1} ∇F (w, A), and c is an absolute constant.

Low correlation of discrete logarithms

We computed the mean squared covariance

E
A,B∼Z∗

p

(
Cov

X∼Z∗
p

[indAX, indBX ]
)2

(2)

for prime numbers in the interval [3, 500]. The results are shown in Figure 3.

Figure 3. Mean squared covariance between two logarithms, indaX and indbX , when X is a random variable

uniformly distributed on Z∗
p.
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