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INTRODUCTION

Spectral clustering is a modern, powerful
clustering approach. It uses the eigenvec-
tors of a normalized graph Laplacian for
embedding the data into a low-dimensional
space for easy clustering. However, it is well
known to face two major challenges:

• scalability (speed and memory),
• out of sample extension.

We present a memory and speed efficient
spectral clustering algorithm in the setting of
cosine similarity that only uses the following
efficient linear algebra operations:

• elementwise manipulation,
• matrix-vector multiplication, and
• low-rank SVD.

WHAT IS SPECTRAL CLUSTERING?
There are different versions of spectral clus-
tering; here we present the formulation by
Ng, Jordan and Weiss (2001).
Input: Data matrix X ∈ Rn×d, number of

clusters k, scale parameter σ
Output: Clusters C1, . . . , Ck

1: Construct a pairwise similarities matrix

W = (wij), wij = e−
∥xi−xj∥

2

2σ2 , i ̸= j

2: Find the row sums of W and use them to
define a diagonal matrix D = diag(W1).
Let W̃ = D−1/2WD−1/2.

3: Find the k largest eigenvectors of W̃ and
form an embedding matrix

X 7→ V = [v1 . . .vk] ∈ Rn×k.

4: Apply k-means to group the rows of V
into k clusters.

DEMONSTRATIONS

SPEED SCALABILITY (ICPR18’, PRL 19’)

Given data X ∈ Rn×d with L2-normalized
rows, the cosine similarity matrix is

W = XXT − I.

First, we can compute D directly from X:

D = diag((XXT − I)1) = diag(X(XT1)−1).

Next, we write

W̃ = X̃X̃T −D−1, X̃ = D−1/2X.

Finally, after removing a small fraction (α)
of low-degree points (in order to make D−1

nearly constant diagonal), we use the left
singular vectors of X̃ to approximate the
eigenvectors Ũ of W̃.
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MEMORY SCALABILITY (CIARP 2023, TO APPEAR)

Single batch learning. Assume a small batch of data of size s ≪ n, denoted Xs ∈ Rs×d, that
has become available through sampling. We estimate the right singular vectors of X̃ as follows:

X̃T X̃ = XTD−1X =
n∑

i=1

1

di
xix

T
i ≈ n

s

s∑
i=1

1

di
xix

T
i =

n

s
X̃T

s X̃s,

where X̃s and Ds represent the restrictions of X̃ and D to the sample Xs, respectively:

X̃s = D−1/2
s Xs, Ds = diag(ds), ds = Xs ·

n∑
i=1

xi − 1s ≈
n

s
Xs(X

T
s 1s)− 1s.

Letting the rank-k SVD of X̃s be X̃s ≈ ŨsΣ̃sṼ
T
s , we have ṼṼT ≈ ṼsṼ

T
s and Σ̃ ≈

√
n
s Σ̃s.

Therefore, the nonlinear embedding of the batch Xs ∈ Rs×d is

Ys := X̃sṼΣ̃
−1

≈ X̃sṼs

(√
n

s
Σ̃s

)−1

=

√
s

n
X̃sṼsΣ̃

−1

s ∈ Rs×k.

How to choose s. Apply the above single-batch learning procedure repeatedly and separately
on a collection of nested batches of increasing sizes {Xsi}i≥0 and focus on the convergence of
the outputs Ṽsi under the Grassmannian metric:

gi =
∥∥∥ṼsiṼ

T
si − Ṽsi−1Ṽ

T
si−1

∥∥∥
F
=

√
2k − 2

∥∥∥ṼT
siṼsi−1

∥∥∥2
F
=

√√√√2
k∑

j=1

sin2 θij , i = 1, 2, . . .

where 0 ≤ θi1 ≤ · · · ≤ θik ≤ π
2 are the principal angles between the column spaces of Ṽsi and

Ṽsi−1 . Empirically, we set s = si such that all θij ≤ θ0, i.e., gi <
√

2 · k · sin2 θ0 =
√
2k sin θ0.

Out of sample extension. Any new point, say x0 ∈ Rd is embedded as follows:

y0 =

√
s

n

(
d
−1/2
0 xT

0

)
ṼsΣ̃

−1

s ∈ Rk, d0 = xT
0

n∑
i=1

xi − 1 ≈ n

s
xT
0 (X

T
s 1s)− 1.

COMPUTATIONAL CHALLENGES

• Memory requirement: O(n2)

• Computational cost:

– Construction of W: O(n2d)

– Decomposition of W: O(n3)

Data sets n p k

usps 9,298 256 10
pendigit 10,992 16 10
mnist 70,000 184 10
20news 18,768 55,570 20
protein 24,387 357 3
covtype 581,012 54 7

CONCLUSIONS

We presented some recent and ongoing work on the speed and memory scalability of spectral
clustering with cosine similarity. Preliminary results demonstrate their effectiveness.

RESULTS (MEMORY SCALABILITY)


