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INTRODUCTION

Spectral clustering is a modern, powerful
clustering approach. It uses the eigenvec-
tors of a normalized graph Laplacian for
embedding the data into a low-dimensional
space for easy clustering. However, it is well
known to face two major challenges:

e scalability (speed and memory),
* out of sample extension.

We present a memory and speed efficient
spectral clustering algorithm in the setting of
cosine similarity that only uses the following
efficient linear algebra operations:

¢ elementwise manipulation,

* matrix-vector multiplication, and
e Jow-rank SVD.

WHAT IS SPECTRAL CLUSTERING?

There are different versions of spectral clus-
tering; here we present the formulation by

Ng, Jordan and Weiss (2001).

Input: Data matrix X € R"*¢, number of
clusters k, scale parameter o

Output: Clusters C,...,Ck
1: Construct a pairwise similarities matrix
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2: Find the row sums of W and use them to
define a diagonal matrix D = diag(W1).

Let W = D~ 1/2WD~1/2, N
3: Find the £ largest eigenvectors of W and
form an embedding matrix

X = V=[vi...vi] € R"*F,

4: Apply k-means to group the rows of V
into k clusters.

DEMONSTRATIONS

Memory requirement: O(n?)
Computational cost:

— Construction of W: O(n?d)
— Decomposition of W: O(n?)

Data sets n p| k

9,298 256 | 10
10,992 16 | 10
70,000 184 | 10
18,768 | 55,570 | 20
24,387 357 | 3

581,012 b4 | 7

usps
pendigit
mnist
20news
protein
covtype
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SPEED SCALABILITY (ICPR18’, PRL 19’) RESULTS (MEMORY SCALABILITY)

Given data X € R"*% with Ls-normalized
rows, the cosine similarity matrix is

W = XX! — 1.

First, we can compute D directly from X:

D = diag((XX" —1I)1) = diag(X(X* 1) —1).

Next, we write

~

X =D /32X

W =XX"-D 1,

Finally, after removing a small fraction («)
of low-degree points (in order to make D~
nearly constant diagonal), we use the left

singular vectors of X to approximate the
eigenvectors U of W.
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MEMORY SCALABILITY (CIARP 2023, TO APPEAR)

Single batch learning. Assume a small batch of data of size s < n, denoted X, & R5%4 that
has become available through sampling. We estimate the right singular vectors of X as follows:

~ 1 n 1 N
XX =XTD X = —x,x! ~ = —x,x! = —-XI'X,
Z XX Zdixxz X, X,

where X, and D, represent the restrictions of X and D to the sample X, respectively:

~

X, =D;'?X,, D,=diag(d,), d,=X,-Y x —1,~_-X,(X71,) - 1,.
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Letting the rank-k SVD of X, be X, ~ U,X, VT, we have VV7
Therefore, the nonlinear embedding of the batch X, € R**¢ is
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How to choose s. Apply the above single-batch learning procedure repeatedly and separately
on a collection of nested batches of increasing sizes { X, };>¢ and focus on the convergence of

the outputs V,, under the Grassmannian metric:
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where 0 < 0;; < --- < 0;, < 5 are the principal angles between the column spaces of V.. and
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V,._,. Empirically, we set s = s; such thatall 6;; < 0y, 1.e., g; < \/ 2.k -sin’ 6y = v/2ksinb,.

Out of sample extension. Any new point, say xo € R? is embedded as follows:

_ ~ o~ -
vo = /2 (do 1/2X§) V.E, €RY, do=xF Y xi— 1~ x5 (XT1,) - 1.
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CONCLUSIONS

We presented some recent and ongoing work on the speed and memory scalability of spectral
clustering with cosine similarity. Preliminary results demonstrate their etfectiveness.



