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Introduction

Continuous normalizing flow (CNF) is a class of deep generative models for

efficient sampling and likelihood estimation, which achieves attractive per-

formance, particularly in high dimensions. The flow is often implemented

using a sequence of invertible residual blocks, each of which can be complex.

End-to-end training of such deep models thus often places a high demand on

computational resources and memory consumption.

We are inspired by the Jordan-Kinderleherer-Otto (JKO) scheme to perform

block-wise training of CNF. Each block implements one step in the JKO scheme

to learn the deterministic transport map byminimizing an objective of that block

given the trained previous blocks. Note that unlike the popular diffusion models.

our approach trains a neural ODE model without SDE sampling (injection of

noise) nor learning of score matching.

Goals

Restructure the end-to-end design of CNF to be step-wise training.

Likelihood-based training objective for better likelihood estimation.

Utilize the density evolution of diffusion process via invertible ODE flow,

avoiding SDE sampling.

Preliminaries

(a) JKO-iFlow (b) usual CNF

Figure 1. Comparison of JKO-iFlow

(proposed) and standard CNF

models. In contrast to most

existing CNF models, JKO-iFlow

learns the unique deterministic

transport equation corresponding

to the diffusion process through

block-wise training of a neural

ODE model.

Continuous Normalizing Flow (CNF). A density

evolution equation of ρ(x, t) such that ρ(x, 0) =
pX and as t increases ρ(x, t) approaches pZ ∼
N (0, Id). Specifically, the flow is induced by an

ODE of x(t) in Rd:

ẋ(t) = f(x(t), t), x(0) ∼ pX . (1)

The marginal density of x(t) is denoted as

p(x, t), which evolves according to the continu-

ity equation (Liouville equation) of (1) written

as

∂tp + ∇ · (pf) = 0, p(x, 0) = pX(x).

Ornstein–Uhlenbeck (OU) process. Consider

the SDE dXt = −∇V (Xt)dt +
√

2dWt, where

in the case of normal equilibrium V (x) = |x|2/2.
In this case, the process is known as the (multi-

variate) OU process. The Fokker-Planck equa-

tion (FPE) describes the evolution of ρt to-

wards the equilibrium pZ as follows, where

V (x) := |x|2/2,
∂tρ = ∇ · (ρ∇V + ∇ρ), ρ(x, 0) = pX(x). (2)

JKO scheme. The JKO scheme [2] computes a sequence of distributions pk,

k = 0, 1, · · · , starting from p0 = ρ0 ∈ P . With step size h > 0, the scheme at

the k-th step is written as

pk+1 = arg min
ρ∈P

F [ρ] + 1
2h

W 2
2 (pk, ρ), (3)

where F [ρ] := KL(ρ||pZ). It was proved in [2] that as h → 0, the solution pk
converges to the solution ρ(·, kh) of (2) for all k.

Main contributions

1. Propose JKO-iFlow, a CNF model based on the JKO scheme, which unfolds the discrete-time dynamic

of the Wasserstein gradient flow.

2. Develop a block-wise training procedure which determines the number of blocks adaptively, with

additional reparametrization and refinement techniques to improve model accuracy and computational

efficiency.

3. Demonstrate reduction in computational cost and improvement on generative performance and

likelihood estimation against flow and diffusion models on simulated and real data.
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Figure 2. Results on two-dimensional simulated datasets by JKO-iFlow and competitors.

Proposed JKO-iFlow

We can show that the JKO scheme at k-th step in (3) is equivalent to solving for the transport Tk+1 by

Tk+1 = arg min
T :Rd→Rd

F [T ] + 1
2h

Ex∼pk‖x − T (x)‖2, (4)

where F [T ] = KL(T#pk||pZ) for (T#p)(A) = p(T −1(A)) on a measurable set A. Under (1), the minimization

(4) is further equivalent to

min
{f(x,t)}

Ex(tk)∼pk

(
V (x(tk+1)) −

∫ tk+1

tk

∇ · f(x(s), s)ds + 1
2h

‖x(tk+1) − x(tk)‖2), (5)

where x(tk+1) = x(tk) +
∫ tk+1

tk
f(x(s), s)ds. The proposed JKO-iFlow learns the k-th residual block fθk

with

parameters θk by minimizing (5). Termination of how many blocks to be trained is determined by the relative

W2 movement. Numerically, we estimate the integral in (5) by the fixed-stage RK4, and further propose an

efficient finite-difference estimator of ∇ · f based on the Hutchinson’s trace estimator. We use the adjoint

sensitivity method in backpropagation.

We further adopt two computational techniques to facilitate learning of the trajectories in the probability

space. The first reparametrization technique adjusts hk = tk+1 − tk based on W2 movement to encourage a

more even movement across blocks. The second refinement technique interpolates within each [tk, tk+1] to
improve training accuracy. Figure 3 illustrates these techniques.
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Figure 3. Diagram illustrating trajectory reparameterization and refinement. Top: the original trajectory under three blocks via

JKO-iFlow. Bottom: the trajectory under six blocks after reparameterization and refinement, rendering more even W2 movements.

Experiments

We show the computational efficiency and competitive performance of JKO-iFlow on generating real

tabular datasets and natural images (by flow in latent space).

Table 1. Results on tabular datasets. All competitors are trained in a fixed-budget setup using 10 times more mini-batches (their

performances using the same number of mini-batches are worse and not comparable to JKO-iFlow).

Data Set Model # Param Test MMD-m Test MMD-1 NLL

POWER

d = 6

τ : 1.73e-4 τ : 2.90e-4
JKO-iFlow 76K 9.86e-5 2.40e-4 -0.12

OT-Flow 76K 7.58e-4 5.35e-4 0.32

FFJORD 76K 9.89e-4 1.16e-3 0.63

IGNN 304K 1.93e-3 1.59e-3 0.95

IResNet 304K 3.92e-3 2.43e-2 3.37

ScoreSDE 76K 9.12e-4 6.08e-3 3.41

GAS

d = 8

τ : 1.85e-4 τ : 2.73e-4
JKO-iFlow 76K 1.52e-4 5.00e-4 -7.65

OT-Flow 76K 1.99e-4 5.16e-4 -6.04

FFJORD 76K 1.87e-3 3.28e-3 -2.65

IGNN 304K 6.74e-3 1.43e-2 -1.65

IResNet 304K 3.20e-3 2.73e-2 -1.17

ScoreSDE 76K 1.05e-3 8.36e-4 -3.69

Data Set Model # Param Test MMD-m Test MMD-1 NLL

MINIBOONE

d = 43

τ : 2.46e-4 τ : 3.75e-4
JKO-iFlow 112K 9.66e-4 3.79e-4 12.55

OT-Flow 112K 6.58e-4 3.79e-4 11.44

FFJORD 112K 3.51e-3 4.12e-4 23.77

IGNN 448K 1.21e-2 4.01e-4 26.45

IResNet 448K 2.13e-3 4.16e-4 22.36

ScoreSDE 112K 5.86e-1 4.33e-4 27.38

BSDS300

d = 63

τ : 1.38e-4 τ : 1.01e-4
JKO-iFlow 396K 2.24e-4 1.91e-4 -153.82

OT-Flow 396K 5.43e-1 6.49e-1 -104.62

FFJORD 396K 5.60e-1 6.76e-1 -37.80

IGNN 990K 5.64e-1 6.86e-1 -37.68

IResNet 990K 5.50e-1 5.50e-1 -33.11

ScoreSDE 396K 5.61e-1 6.60e-1 -7.55

(a) Generated MNIST digits. FID: 7.95.

(b) Generated CIFAR10 images. FID: 29.10. (c) Generated Imagenet-32 images. FID: 20.10.

Figure 4. Generated samples of MNIST, CIFAR10, and Imagenet-32 by JKO-iFlow model in latent space. We select 2 images per

class for CIFAR10 and 1 image per class for Imagenet-32. The FIDs are shown in subcaptions.

∗ Follow-up work proving the convergence of the JKO-iFlow model and obtain generation guarantee [1].
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